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Random walk with memory enhancement and decay
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~Received 28 September 2001; published 25 March 2002!

A model of random walk with memory enhancement and decay was presented on the basis of the charac-
teristics of the biological intelligent walks. In this model, the movement of the walker is determined by the
difference between the remaining information at the jumping-out site and jumping-in site. The amount of the
memory informationsi(t) at a sitei is enhanced with the increment of visiting times to that site, and decays
with time t by the ratee2bt, whereb is the memory decay exponent. Whenb50, there exists a transition from
Brownian motion~BM! to the compact growth of walking trajectory with the density of information energyu
increasing. But forb.0, this transition does not appear and the walk with memory enhancement and decay
can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.
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I. INTRODUCTION

During the last two decades, a lot of complex phenom
including fractal growth and random walks have attrac
considerable interest. Since critical phenomena made us
preciate the presence of power laws in nature, random w
became a paradigm of various models involving stocha
motion @1–4#. The traditional random walks, such as Brow
ian motion~BM! have been studied in great detail@1–3#. In
recent years, much attention has been paid to the ran
walks with interaction including self-avoiding walk, rando
walk on percolation, active walk, and so on@1–7#. Self-
avoiding walk describes the statistic behavior of polymer
solution@5#. Random walks on fractals present the charac
of abnormal transport properties for fractal systems@4,6#.
Active walk is applicable to the study of river formation, a
swarms, and so forth@1,7#.

In addition, there has been an increasing interest in
research of biological motions, such as migration of fi
flocks of flying birds, and animal aggregations@8–10#. Vic-
sek et al. introduced a model to describe the self-order
motion of biological individuals, in which the velocity of
given particle is related to those of the neighboring partic
@10#. The model gives the picture of cooperation motion, b
the relations between the velocities of particles have so
degree of artificialness. Very recently, a model of se
attracting walk ~SATW! was introduced@11–13#. In the
model, a random walker jumps to the nearest neighbor s
with jumping probability p}exp(nu), where n51 for al-
ready visited sites andn50 for unvisited sites.u stands for
the attractive interaction. Foru.0, the walk is attracted to
its own trajectory. Sincen only takes two values: 0 or 1, th
model is too simple to describe the variation of memory w
time @14#. In a previous work, we presented the ‘‘true
SATW model involved in the enhancement of memory w
the increase of visited times@15#. Besides memory enhance
ment, for some biological intelligent walks, such as t
walks of insects, the memory also decreases with the pas
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of time @16#. Based on the bionics, we will propose a mod
of intelligent random walk, which includes the main chara
ters of the biological walks, e.g., the walk of ants. Consid
ing the number of times a site is visited as the variation
the environmental state made by the walker, the motion
the walker is restricted by the visiting number, which is t
effect of environment on the walker. In this sense, the pres
model can be extended to a general form:the walk changes
the environment, and the varied environment affects the w
in return. Furthermore,the effect of the varied environmen
decays with the passage of time.

In this paper, we present a model of random walk w
memory enhancement and decay based on the character
of the biological intelligent walks. The results will be helpfu
to understand the behavior of the walks in complex syste
interacting with environment, such as the behaviors of
sects, animals, and collective motion of robots.

II. MODEL AND METHOD

The Monte Carlo~MC! method has been used in th
simulations. The walker moves on the sites of a square lat
from a certain sitei to its neighboring sitej with the jumping
probability

pi j }exp~DUi j /kBT!, ~1!

where DUi j is the energy difference between jumping-o
site i and jumping-in sitej. kB is the Boltzmann constant. Fo
the case of constant temperature,kBT is set to an unity. In the
present model,

DUi j 5Dsi j u, ~2!

whereDsi j is the difference between the amount of inform
tion at jumping-out sitei and that at jumping-in sitej, i.e.,
Dsi j 5sj2si . u is the density of information energy, whic
is the variation of energy generated by unit information.u
.0 indicates that the walker tends towards the sites w
strong information. Now, the information comes from th
memory of visited times by the walker. We express the v
iting times at MC timem and suppose the information de
clines with time by the ratee2bt. Thus, for the sitei, the
d-
©2002 The American Physical Society01-1
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remaining informationsi(t) at MC timet is the accumulation
of the remembered visiting times, i.e.,

si~ t !5(
m

ni~m!e2b(t2m), ~3!

whereb is the memory decay exponent andb>0. ni(m) is
taken as 1~if site i was visited at timem) or 0 ~if site i was
not visited at timem). Therefore, the probabilitypi j , with
which the walker jumps from sitei into its neighboring sitej,
can be written as

pi j }exp@~sj2si !u#. ~4!

In addition, at timet, the remembered sites are the sites w
nonzero remaining information at this moment, i.e.,

s~ t !.0. ~5!

In the simulations, we took 1027 as the nonzero criterion. In
reality, when the amount of information exceeds a cert
value, the effect does not increase anymore@14–16#. There-
fore, we introduce a saturated-information amountsm to ex-
press the superior limit. The restriction ons can be described
as s(t)<sm . When b50, i.e., the information never de
clines, the present model degenerates to a ‘‘true’’ SATW o
@15#. As b→`, it reduces to the pure BM.

The structural characteristics of the walking trajectory c
be described by the mean-square end-to-end distance^R2(t)&
and the average number of visited sites^S(t)&. It is expected
that there exist scaling relations between these two quant
and timet as

^R2~ t !&}t2n, ~6a!

and

^S~ t !&}tk, ~6b!

wheren andk are the scaling exponents.

III. RESULTS AND DISCUSSIONS

The numerical simulations in two-dimensional~2D! space
are performed for variant memory decay exponentb and
densities of information energyu.

In the caseb50, there exists a transition from rando
walk behavior to SATW one. The transition pointuc was
named for the critial density of the information energy and
decreases with the increase of the saturated-informa
amountsm . We have thatuc.0.88 for sm51 anduc.0.1
for sm513 @15#. Figure 1 plots the log-log relation o
^R2(t)& and ^S(t)& to time stept with variant u for a very
small value ofb (b51024). It is found that, there exists a
interesting phenomenon that all of these lines are paralle
that of BM in the long-time stage, and the scaling expone
n;0.5 andk;0.9 are the same as those of BM@17#. In the
case of smallu, the result is easy to understand because
effect of information energy on the walk is little and the wa
is dominated by the thermal fluctuation. But for the caseu
.uc , the result is unconformable with our expectation.
04110
n

e

n

es

t
n

to
ts

e

the inference, in the case of very smallb, the scaling expo-
nentsn andk should be close to those in the caseb50, and
the present results should take the values of the ‘‘tru
SATW, n.1/3 andk.2/3 @15#. But our simulations show
whenu.uc , the walk withb.0 belongs to a different uni-
versal class from that for the walk withb50. Whenb50,
there is a transition from BM (n.0.5 andk.0.9 @17#! to the
compact growth of walking trajectory (n.1/3 andk.2/3)
with u increasing@12,15#. But for b.0, the transition exists
no longer and we getn.0.5 andk.0.9 for all values ofu.
The changes ofsm and b affect the initial behavior rathe
than the asymptotic behavior for the curves in Fig. 1. W
the increase ofsm or the decrease ofb, the initial stage will
become long except for the caseu50. However, the
asymptotic behavior remains the same as that of BM. In
following, we make a thorough inquiry to the specious infe
ence on the caseu.uc .

Figure 2 plots the trajectories of the walks with large de
sity of information energyu in two cases,b50 andb.0.
Figure 2~a! corresponds to the caseb50. The cluster con-
sisting of visited sites appears pie shaped and its dimen
is the same as that of the space. Moreover, the cluster gr
by its edge spreading out, just like the growth of the Ed

FIG. 1. The log-log plots of mean-square end-to-end dista
^R2(t)& ~a! and average number of visited sites^S(t)& ~b! to time
step t for the random walk with memory enhancement and dec
The saturated information amountsm513 and decay exponentb
51024. For the ‘‘true’’ SATW with sm513, the critical attractive
energyuc.0.1 @15#. From top to bottom, the density of informatio
energyu is taken as 0, 0.1, 0.2, 0.3, and 0.4, respectively.
1-2
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cluster@18,19#. Figure 2~b! shows two clusters consisting o
the sites withs(t).0 at t563106 and 163106 MC steps,
respectively, forb51024. These two clusters indicate th
remembered sites at these two certian moments. They
rather compact. Their dimensions calculated by the b
counting method are about 1.9@2,19#. Their morphologies
are variable, but the sizes appear to be about the same
total number of visited sites looks to be the traces left by
movement of the variable-form cluster composed of the s
with s(t).0. To check the validity of the visual observatio
from Fig. 2~b!, we have calculated the mean number^Sc(t)&
of the sites withs(t).0. The results are shown in Fig. 3.
can be seen that in the initial stage, the visited sites are

FIG. 2. The clusters consisting of the visited sites in the cas
the density of information energyu50.35 and saturated informa
tion amountsm513. ~a! The random walk with memory enhance
ment but without memory decay (b50), t563106 ~in black! and
t5163106 MC steps~in dark gray!. ~b! The random walk with
memory enhancement and decay. The decay exponentb51024. All
visited sites att5163106 are denoted by light gray points. Th
remembered sites, which have been visited and process non
remaining information, are marked by black points~at t563106)
and dark gray points~at t5163106), respectively. The starting
points are indicated by white~a! and black~b! crosses. For the
‘‘true’’ SATW with sm513, the critical attractive energyuc.0.1
@15#.

FIG. 3. The log-log plots of the mean number^Sc(t)& of the
remembered sites to time stept for the random walk with memory
enhancement and decay.u50.4 andsm513. For the ‘‘true’’ SATW
with sm513, the critical attractive energyuc.0.1 @15#. From top to
bottom, the decay exponentb is taken as 1024, 1023, and 1022,
respectively.
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remembered and newly visited sites are accumulated in
memory. Sô Sc(t)& increases with the passage of time. T
behavior of^Sc(t)& is the same as that of^S(t)& in the early
stage in Fig. 1~b!. But after a certain timetc , a part of visited
sites is forgotten and newly visited sites supplement to
membered sites. It maintains the number of remembe
sites close to an equilibrium value, i.e.,^Sc(t)& remains a
constant in the later stage. Based on Eqs.~3! and ~5!, and
considering that the recent visits make much contribution
^Sc(t)&, we havesme2btc&1027 ~the nonzero criterion! ap-
proximately. By solving the inequality, we can gettc
*(1/b)ln(107sm). Corresponding tob51022, 1023, and
1024, the expected values are ln(tc)* 8, 10, and 12, respec
tively, for the casesm513. They are consistent with the turn
ing points of the ln̂Sc(t)&-ln t curves in Fig. 3.

Furthermore, we have computed the mean-square end
end displacement̂Rc

2(t)& of the mass center of the cluste
composed of the sites withs(t).0. The results are shown in
Fig. 4. It can be seen that, foru.uc , the scaling exponentnc

of ^Rc
2(t)& to t is still close to that of BM in the late stage

i.e., nc;0.5. Comparing Fig. 4 and Fig. 1~a!, we can find
that they are rather similar to each other, but different
details. The most important characteristic is that the lo
time scaling exponentnc of ^Rc(t)& is identical to n of
^R2(t)&.

To get a deep understanding of the difference between
behavior of^Rc

2(t)& and ^R2(t)&, the relationship between
^Rc

2(t)& and ^R2(t)& needs to be set up. Whenu.uc , the
cluster consisting of the remembered sites is rather com
and the dimensiond is close to the space dimension. In th
vector diagram,Rc is the vector from the mass center of th
cluster to the origin point,r is the vector from the mas
center to the walker, andu is the angle betweenRc and r .

of

ero

FIG. 4. The log-log plots of the mean-square end-to-end d
tance^Rc

2(t)& of the mass center of the cluster consisting of t
remembered sites versus time stept for the random walk with
memory enhancement and decay. The decay exponentb51024.
The saturated information amountsm513. From top to bottom,u
50, 0.1, 0.2, 0.3, and 0.4, respectively. For the ‘‘true’’ SATW wi
sm513, the critical attractive energyuc.0.1 @15#. The given values
for the slopes are for a certain timet and these values will approac
nc51/2 for increasingt.
1-3
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Then the mean-square end-to-end displacementR2(t) of the
walker can be written as

R25Rc
21r 212Rcr cos~u!. ~7!

For u.uc , it takes a long time for the walker to jump to a
unremembered site. Before doing this, the walker diffu
around on the remembered sites@with s(t).0# @12,15#. Con-
sidering the mean effect for the cluster, Eq.~7! can be con-
verted into

^R2&5

E
0

bE
0

2p

@Rc
21r 212Rcr cos~u!#rdudr

E
0

bE
0

2p

rdudr

, ~8!

whereb stands for the equilibrium radius of the cluster co
sisting of the remembered sites. After the integration, Eq.~8!
becomes

^R2&5^Rc
2&1b2/2. ~9!

Now we make a comparison between^R2& @in Fig. 1~a!#
and ^Rc

2& ~in Fig. 4! for u.uc using Eq.~9!. In the caseb
50, the mass center of the cluster can be considered t
immobile in the late stage@see Fig. 2~a!#, then ^Rc

2&;0.
^R2& increases with time by the exponentn51/2 ~in the
early stage! and 1/3 ~in the late stage! for u.uc @15#, as
mentioned above. In the caseb.0, since the memory deca
of the information generated by early visits, the cluster te
to grow up towards a certain direction in which the recen
visited sites are crowded together. Thus, the mass cent
movable, as shown in Fig. 2~b!. With the passage of time
going, the sizeb of the cluster composed of the remember
sites increases. Whent.tc , b stops increasing and ap
proaches a fixed value@see Fig. 3#. According to Eq.~9!,
when t,tc , the increment of̂ Rc

2& with time t is less than
that of ^R2&. This is the reason why ln^Rc

2& in Fig. 4 is less
than ln̂ R2& for t,tc . Whent.tc , b approximates to a con
stant and̂ Rc

2& continues to increase with time. So Eq.~9!
becomeŝR2&'^Rc

2& in the late stage. It comes to the resu
that, in the late stage, the movement of the cluster consis
of remembered sites can be regarded as that of the m
center of the cluster, i.e., the BM of a mass point. Therefo
-

.

.

de
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the exponentn5nc.0.5. It is just the solution about th
specious interference mentioned at end of the first parag
in the present section.

The other exponentk of the walk can also be deduced b
a simple scaling analysis. The scaling relation of mean nu
ber ^S(t)& of visited sites to root-mean-square displacem
^R(t)& is given by@11#

^S&}^R&df , ~10!

with ^R&5^R2&1/2, wheredf is the fractal dimension of the
cluster consisting of the visited sites. Comparing Eqs.~6! and
~10!, we get

k5ndf . ~11!

Using the box-counting method@2,19#, we obtain thatdf
.1.8 in the late stage. Upon the substitution ofdf andn in
Eq. ~11!, we get thatk.0.9, which is the scaling exponen
value of BM @17#.

In summary, the behavior of the random walk wi
memory enhancement and decay can be described as
lows. In the initial period, the walker starts to move a
leaves information on the visited sites. The informati
amount s(t) increases with the number of visits and d
creases with the passage of time. The cluster consistin
the remembered sites@with s(t).0# grows gradually. When
time t exceeds a certain valuetc , the area of this cluste
remains relatively stable rather than growing continuous
The reason is that, some early visited sites are forgotten
some newly visited sites supplement. So the number of
membered sites reaches a stable value. Thus, the cluster
sisting of the sites withs(t).0 maintains a certain size an
moves randomly in the space. In substance, this movem
of the cluster results from the increase and decrease ofs(t)
at the edge sites of the cluster. Therefore, the larger the d
exponentb is, the smaller the size of the cluster is and t
shorter the timetc is. Whenb50, the present model degen
erates to the ‘‘true’’ self-attracting walk model, and whenb
.0, it is in the universality class of random walk.
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