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Random walk with memory enhancement and decay

Zhi-Jie Tan, Xian-Wu Zod, Sheng-You Huang, Wei Zhang, and Zhun-Zhi Jin
Department of Physics, Wuhan University, Wuhan 430072, China
(Received 28 September 2001; published 25 March 2002

A model of random walk with memory enhancement and decay was presented on the basis of the charac-
teristics of the biological intelligent walks. In this model, the movement of the walker is determined by the
difference between the remaining information at the jumping-out site and jumping-in site. The amount of the
memory informatiors;(t) at a sitei is enhanced with the increment of visiting times to that site, and decays
with time t by the ratee™#!, whereg is the memory decay exponent. Whgr: 0, there exists a transition from
Brownian motion(BM) to the compact growth of walking trajectory with the density of information energy
increasing. But for3>0, this transition does not appear and the walk with memory enhancement and decay
can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.
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I. INTRODUCTION of time [16]. Based on the bionics, we will propose a model
of intelligent random walk, which includes the main charac-
During the last two decades, a lot of complex phenomenéers of the biological walks, e.g., the walk of ants. Consider-
including fractal growth and random walks have attractedng the number of times a site is visited as the variation of
considerable interest. Since critical phenomena made us afiie environmental state made by the walker, the motion of
preciate the presence of power laws in nature, random walkiéie walker is restricted by the visiting number, which is the
became a paradigm of various models involving stochasti€ffect of environment on the walker. In this sense, the present
motion[1—4]. The traditional random walks, such as Brown- model can be extended to a general fothe walk changes
ian motion(BM) have been studied in great detgil-3]. In  the environment, and the varied environment affects the walk
recent years, much attention has been paid to the randoif return. Furthermorethe effect of the varied environment
walks with interaction including self-avoiding walk, random decays with the passage of time
walk on percolation, active walk, and so ¢fb-7]. Self- In this paper, we present a model of random walk with
avoiding walk describes the statistic behavior of polymer inmemory enhancement and decay based on the characteristics
solution[5]. Random walks on fractals present the characterf the biological intelligent walks. The results will be helpful
of abnormal transport properties for fractal systefdg).  to understand the behavior of the walks in complex systems
Active walk is applicable to the study of river formation, ant interacting with environment, such as the behaviors of in-

swarms, and so fortfi,7]. sects, animals, and collective motion of robots.
In addition, there has been an increasing interest in the
research of biological motions, such as migration of fish, Il. MODEL AND METHOD

flocks of flying birds, and animal aggregatiof&-10]. Vic-
sek et al. introduced a model to describe the self-ordere
motion of biological individuals, in which the velocity of a
given particle is related to those of the neighboring particle z.
[10]. The model gives the picture of cooperation motion, butProPability

the relations between the velocities of particles have some

degree of artificialness. Very recently, a model of self- pij - expAU;; ke T), @

attracting walk (SATW) was introduced[11-13. In the \here AU, is the energy difference between jumping-out
model, a random walker jumps to the nearest neighbor site§jte| and jumping-in sitg. kg is the Boltzmann constant. For

with jumping probability p<exp(nu), wheren=1 for al-  the case of constant temperatugT is set to an unity. In the
ready visited sites and=0 for unvisited sitesu stands for  resent model,

the attractive interaction. Far>0, the walk is attracted to

its own trajectory. Since only takes two values: 0 or 1, the AU =As;u, 2)

model is too simple to describe the variation of memory with

time [14]. In a previous work, we presented the “true” whereAs;; is the difference between the amount of informa-

SATW model involved in the enhancement of memory withtion at jumping-out sitd and that at jumping-in sitg i.e.,

the increase of visited timdg45|. Besides memory enhance- As;j=s;—s;. U is the density of information energy, which

ment, for some biological intelligent walks, such as theis the variation of energy generated by unit informatian.

walks of insects, the memory also decreases with the passaged indicates that the walker tends towards the sites with
strong information. Now, the information comes from the
memory of visited times by the walker. We express the vis-

* Author to whom correspondence should be addressed. Email adting times at MC timem and suppose the information de-
dress: xwzou@whu.edu.cn clines with time by the rate™#'. Thus, for the sitd, the

d The Monte Carlo(MC) method has been used in the
simulations. The walker moves on the sites of a square lattice
drom a certain site to its neighboring sitg¢ with the jumping
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remaining informatiors;(t) at MC timet is the accumulation ol o T T E'(ﬁ/ L]
of the remembered visiting times, i.e., (a) e
10| ;:fff/ A“A ~ §
si(t) =2 ni(mye A, 3 IO
m A 8r 5 a a2 o’ T
= PJZIAA 2% o o
where is the memory decay exponent age=0. n;(m) is ‘> 6r nﬁ'ia AAAAA ..-° odf A
taken as 1(if site i was visited at timem) or O (if site i was M gt aan® oot
not visited at timem). Therefore, the probability;; , with ar ;&?:.”.“,, °°°Oo°° ]
which the walker jumps from siteinto its neighboring sit, ol ESBo°°°°°°°°°°° 1
can be written as ﬁn;f
OL' 1 1 1 1 1 1 1 1
pijeexd (sj—spu]. (4) 0 2 4 6 8 10 12 14 16
In addition, at timet, the remembered sites are the sites with Y
nonzero remaining information at this moment, i.e., 121 (b) E(u!(/ . 1
s(t)>0. (5) 1or e &)
- o “A a® /. .
In the simulations, we took 10 as the nonzero criterion. In A 8 nf‘ﬂﬂaA S
reality, when the amount of information exceeds a certain 7 sl A‘AAAA .." ;,e" J
value, the effect does not increase anynid4—16. There- \é AAAA .,.'00000"
fore, we introduce a saturated-information amosjpto ex- 4t %{?A.A.A..o°:oooo° _
press the superior limit. The restriction sican be described B.gg030000°°°
as s(t)<s,,. When 8=0, i.e., the information never de- 2r o° !
clines, the present model degenerates to a “true” SATW one ol
[15]. As B— oo, it reduces to the pure BM. 0 2 4 6 8 10 12 14 16
The structural characteristics of the walking trajectory can Int

be described by the mean-square end-to-end distar¢e) )
and the average number of visited sit&t)). It is expected
that there exist scaling relations between these two quantiti

FIG. 1. The log-log plots of mean-square end-to-end distance
E’(é?z(t)) (a) and average number of visited sit€(t)) (b) to time
stept for the random walk with memory enhancement and decay.

and timet as The saturated information amougi=13 and decay exponergt
(Rz(t))octz” (6a) =10"*. For the “true” SATW with s,,=13, the critical attractive
' energyu.=0.1[15]. From top to bottom, the density of information
and energyu is taken as 0, 0.1, 0.2, 0.3, and 0.4, respectively.
(S(t))octt, (6b)

the inference, in the case of very smgll the scaling expo-
wherev andk are the scaling exponents. nentsy andk should be close to those in the cg®e 0, and
the present results should take the values of the “true”
SATW, v=1/3 andk=2/3 [15]. But our simulations show,
whenu>u,, the walk with3>0 belongs to a different uni-

The numerical simulations in two-dimensioriadD) space versal class from that for the walk witd=0. Wheng=0,
are performed for variant memory decay expongnand there is a transition from BM®=0.5 andk=0.9[17]) to the
densities of information energy. compact growth of walking trajectoryvé&=1/3 andk=2/3)

In the caseB=0, there exists a transition from random with u increasing12,15. But for >0, the transition exists
walk behavior to SATW one. The transition poinf was  no longer and we get=0.5 andk=0.9 for all values ofu.
named for the critial density of the information energy and itThe changes 0§, and 38 affect the initial behavior rather
decreases with the increase of the saturated-informatiothan the asymptotic behavior for the curves in Fig. 1. With
amounts,,. We have thau,=0.88 fors,,=1 andu,=0.1 the increase 0§, or the decrease g8, the initial stage will
for s,=13 [15]. Figure 1 plots the log-log relation of become long except for the case=0. However, the
(R?(t)) and(S(t)) to time stept with variantu for a very  asymptotic behavior remains the same as that of BM. In the
small value of8 (8=10 %). It is found that, there exists an following, we make a thorough inquiry to the specious infer-
interesting phenomenon that all of these lines are parallel tence on the case>u,.
that of BM in the long-time stage, and the scaling exponents Figure 2 plots the trajectories of the walks with large den-
v~0.5 andk~0.9 are the same as those of BWr]. In the  sity of information energy in two cases =0 and8>0.
case of small, the result is easy to understand because th€&igure Za) corresponds to the cagg=0. The cluster con-
effect of information energy on the walk is little and the walk sisting of visited sites appears pie shaped and its dimension
is dominated by the thermal fluctuation. But for the case is the same as that of the space. Moreover, the cluster grows
>u., the result is unconformable with our expectation. Byby its edge spreading out, just like the growth of the Eden

III. RESULTS AND DISCUSSIONS
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FIG. 2. The clusters consisting of the visited sites in the case of
the density of information energy=0.35 and saturated informa- o
tion amounts,,,=13. (a) The random walk with memory enhance-
ment but without memory decay3&0), t=6x10° (in black and
t=16x10° MC steps(in dark gray. (b) The random walk with Int
memory enhancement and decay. The decay exp@renD *. All
visited sites at=16x10° are denoted by light gray points. The
remembered sites, which have been visited and process nonz

rergatljnlnkg |nformat.|otr;, ?rte_n;gr(kfg by blacktpoul(mgr?6><tlo? memory enhancement and decay. The decay equﬁeﬁtO"".
agintsa;regirnagicg?ég ba w_hit &) anzj’ t;'le;cie((t"))lvfrg'ssese lfoe:r tlkr:g The saturated information amousgit,=13. From top to bottomu
E’tr > SATW with _y13 e oot attracive oneny —0.1 =0 0-1 0:2, 0.3, and 0.4, respectively. For the “true” SATW with
ue Sm= L2, Ihe crilical aflractive energyc=U. sm= 13, the critical attractive energy.=0.1[15]. The given values
[15]. e :
for the slopes are for a certain timand these values will approach
=1/2 for increasing.

0 2 4 6 8 10 12 14 16

FIG. 4. The log-log plots of the mean-square end-to-end dis-
etrance(Rﬁ(t» of the mass center of the cluster consisting of the
8membered sites versus time stefor the random walk with

cluster[18,19. Figure 2b) shows two clusters consisting of ve
the sites withs(t)>0 att=6x10° and 16<10° MC steps,

respectively, forB=10*. These two clusters indicate the
remembered sites at these two certian moments. They al
rather compact. Their dimensions calculated by the box

counting method are about 1/2,19]. Their morphologies

are variable, but the sizes appear to be about the same. TREES IS forgotten and newly visited sites supplement to re-
total number of visited sites looks to be the traces left by themtemthred :utes. It mlgt;n'tams tre n.umbetr of remembered
movement of the variable-form cluster composed of the site§' estc (is_e t?] a? teqUItI ”“vaa “de' 1.&5:(1)) :jengalns da
with s(t)>0. To check the validity of the visual observation constant in the fater stage. based on E@.and ( )‘. an

from Fig. 2b), we have calculated the mean numb8g(t)) considering that theirgtcent \Q:?ts make much c'ont'r|but|on to
of the sites withs(t)>0. The results are shown in Fig. 3. It (Se(t)), we havesye~"e=<10"" (the nonzero criterionap-

: - e ; proximately. By solving the inequality, we can gét
can be seen that in the initial stage, the visited sites are S“i(llﬁ)ln(ldsm). Corresponding to=10-2, 10°%, and

104, the expected values are tg(= 8, 10, and 12, respec-
tively, for the cases,,=13. They are consistent with the turn-
ing points of the IKS(t))-Int curves in Fig. 3.

Furthermore, we have computed the mean-square end-to-
e end displacementR(t)) of the mass center of the cluster
composed of the sites witt(t)>0. The results are shown in
800600050 0® Fig. 4. It can be seen that, fax>u., the scaling exponent,
of (R2(t)) to t is still close to that of BM in the late stage,
o8%° i.e., v.~0.5. Comparing Fig. 4 and Fig.(&@, we can find
ol ¢ - that they are rather similar to each other, but different in
&é details. The most important characteristic is that the long-
1_°o° | Eiénzit;caling exponeni; of (R.(t)) is identical tov of
0 2 4 6 8 10 12 14 16 To get a deep understanding of the difference between the

Int behavior of(R2(t)) and (R(t)), the relationship between

FIG. 3. The log-log plots of the mean numbi,(t)) of the (RE(D)) and_<R_2(t)> needs to be set up. Whan>uc, the
remembered sites to time stegor the random walk with memory ~ Cluster consisting of the remembered sites is rather compact
enhancement and decay= 0.4 ands,,= 13. For the “true” SATW  and the dimensionl is close to the space dimension. In the
with s,,= 13, the critical attractive energy,~0.1[15]. Fromtop to  Vector diagramR is the vector from the mass center of the
bottom, the decay exponegt is taken as 10%, 10 3, and 1072, cluster to the origin pointr is the vector from the mass
respectively. center to the walker, and is the angle betweeR; andr.

remembered and newly visited sites are accumulated in the
emory. So{S,(t)) increases with the passage of time. The

behavior of(S.(t)) is the same as that §5(t)) in the early

stage in Fig. (b). But after a certain timé., a part of visited
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Then the mean-square end-to-end displacerRé(t) of the  the exponentr=wr.=0.5. It is just the solution about the

walker can be written as specious interference mentioned at end of the first paragraph
s 2 in the present section.
R*=R;+r°+2Rr cod 0). (7 The other exponerk of the walk can also be deduced by

a simple scaling analysis. The scaling relation of mean num-

Foru>u, it takes a long time for the walker to jump t0 an po. 5(t)y of visited sites to root-mean-square displacement
unremembered site. Before doing this, the walker diﬁuse?R(s)?(i?given by[11] a P

around on the remembered sif@sth s(t)>0][12,15. Con-
sidering the mean effect for the cluster, E@) can be con- (Syx(R)Yr, (10)

verted into ) ) ) )
with (R)=(R?)2, whered; is the fractal dimension of the

brem ., cluster consisting of the visited sites. Comparing E§sand
fo fo [RE+r“+ 2R r cog 9)]rd 6dr (10), we get
, (8
b (2w =
f f rdodr k=vd;. (12)
0Jo Using the box-counting methof®,19], we obtain thatd;
=1.8 in the late stage. Upon the substitutiondgfand v in
Eqg. (11), we get thatk=0.9, which is the scaling exponent
value of BM[17].
In summary, the behavior of the random walk with
<R2>=<R§>+b2/2. 9 memory enhancement and decay can be described as fol-
lows. In the initial period, the walker starts to move and
Now we make a comparison betwe@R?) [in Fig. 1@] leaves information on the visited sites. The information
and(R2) (in Fig. 4) for u>u, using Eq.(9). In the casg8  amounts(t) increases with the number of visits and de-
=0, the mass center of the cluster can be considered to b@reases with the passage of time. The cluster consisting of
immobile in the late stag¢see Fig. 2a)], then<R§>~0. the remembered sitéwvith s(t)>0] grows gradually. When
<R2> increases with time by the exponent=1/2 (in the time t exceeds a certain valug, the area of this cluster
early stage and 1/3(in the late stagefor u>u. [15], as remains relatively stable rather than growing continuously.
mentioned above. In the cage>0, since the memory decay The reason is that, some early visited sites are forgotten and
of the information generated by early visits, the cluster tend§ome newly visited sites supplement. So the number of re-
to grow up towards a certain direction in which the recentlymembered sites reaches a stable value. Thus, the cluster con-
visited sites are crowded together. Thus, the mass center #sting of the sites witl$(t)>0 maintains a certain size and
movable, as shown in Fig.(). With the passage of time moves randomly in the space. In substance, this movement
going, the sizé of the cluster composed of the rememberedof the cluster results from the increase and decreasétpf
sites increases. Wheti>t,, b stops increasing and ap- atthe edge sites of the cluster. Therefore, the larger the decay
proaches a fixed valugsee Fig. 3. According to Eq.(9), exponents is, the smaller the size of the cluster is and the
whent<t., the increment of R?) with time t is less than ~ shorter the timé, is. When=0, the present model degen-
that of (R?). This is the reason why {R?) in Fig. 4 is less ~ erates to the “true” self-attracting walk model, and whgn
than I(R2) for t<t.. Whent>t., b approximates to a con- >0, it is in the universality class of random walk.
stant and(R?) continues to increase with time. So HE)
becomegR?)~(R?) in the late stage. It comes to the results
that, in the late stage, the movement of the cluster consisting We would like to thank Zhi-Gang Shao for a helpful dis-
of remembered sites can be regarded as that of the masassion. This work was supported by the National Natural
center of the cluster, i.e., the BM of a mass point. ThereforeScience Foundation and Science of China.

(R?)=

whereb stands for the equilibrium radius of the cluster con-
sisting of the remembered sites. After the integration, (By.
becomes
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